421 research outputs found

    Optical evidence for a magnetically driven structural transition in the spin web Cu3TeO6Cu_3TeO_6

    Full text link
    Cu3TeO6Cu_3TeO_6 is a modest frustrated S=1/2S=1/2 spin system, which undergoes an anti-ferromagnetic transition at TN61T_N\sim61 KK. The anti-ferromagnetic spin alignment in Cu3TeO6Cu_3TeO_6 below TNT_N is supposed to induce a magneto-elastic strain of the lattice. The complete absorption spectrum of Cu3TeO6Cu_3TeO_6 is obtained through Kramers-Kronig transformation of the optical reflectivity, measured from the far-infrared up to the ultraviolet spectral range as a function of temperature (TT). Below T50T^*\sim 50 KK, we find a new mode at 208 cm1cm^{-1}. The spectral weight associated to this additional mode increases as (TT)1/2\propto (T^*-T)^{1/2} with decreasing TT below TT^*. The implication of the optical findings will be discussed in relation to the magnetic phase transition at TNT_N.Comment: 9 pages, 3 figure

    Excitonic lasing in semiconductor quantum wires

    Full text link
    Direct experimental evidences for excitonic lasing is obtained in optically pumped V-groove quantum wire structures. We demonstrate that laser emission at a temperature of 10 K arises from a population inversion of localized excitons within the inhomogenously-broadened luminescence line. At the lasing threshold, we estimate a maximum exciton density of about 1.8 105cm-1.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Optical conductivity in the normal state fullerene superconductors

    Get PDF
    We calculate the optical conductivity, σ(ω)\sigma(\omega), in the normal state fullerene superconductors by self-consistently including the impurity scatterings, the electron-phonon and electron-electron Coulomb interactions. The finite bandwidth of the fullerenes is explicitely considered, and the vertex corection is included aa lala Nambu in calculating the renormalized Green's function. σ(ω)\sigma(\omega) is obtained by calculating the current-current correlation function with the renormalized Green's function in the Matsubara frequency and then performing analytic continuation to the real frequency at finite temperature. The Drude weight in σ(ω)\sigma(\omega) is strongly suppressed due to the interactions and transfered to the mid-infrared region around and above 0.06 eV which is somewhat less pronounced and much broader compared with the expermental observation by DeGiorgi etet alal.Comment: 6 pages, 4 figures. To be published in Physical Review B, July 1

    Optical Probing of Thermal Lattice Fluctuations in Charge-Density-Wave Condensates

    Get PDF
    Thermal lattice fluctuations in charge-density-wave (CDW) condensates have been studied by means of optical investigations on the prototype CDW compound K0.3MoO3 and its alloys. The temperature dependence of the CDW gap absorption in the mid-IR frequency range is strongly indicative of the important role played by the thermal lattice fluctuation effects. The latter remove the inverse-square-root singularity, expected for the case of the static distorted lattice. In fact, a considerable broadening (i.e., larger than k(B)T) of the subgap tail absorption is found by increasing the temperature towards T(CDW). Moreover, we find that the phase phonon modes also give an important contribution to the disorder parameter, thus being an essential ingredient for the thermal fluctuation effects

    Optical Properties of TiN Thin Films close to the Superconductor-Insulator Transition

    Full text link
    We present the intrinsic optical properties over a broad spectral range of TiN thin films deposited on a Si/SiO2_2 substrate. We analyze the measured reflectivity spectra of the film-substrate multilayer structure within a well-establish procedure based on the Fresnel equation and extract the real part of the optical conductivity of TiN. We identify the metallic contribution as well as the finite energy excitations and disentangle the spectral weight distribution among them. The absorption spectrum of TiN bears some similarities with the electrodynamic response observed in the normal state of the high-temperature superconductors. Particularly, a mid-infrared feature in the optical conductivity is quite reminiscent of a pseudogap-like excitation

    Charge dynamics of the spin-density-wave state in BaFe2_2As2_2

    Full text link
    We report on a thorough optical investigation of BaFe2_2As2_2 over a broad spectral range and as a function of temperature, focusing our attention on its spin-density-wave (SDW) phase transition at TSDW=135T_{SDW}=135 K. While BaFe2_2As2_2 remains metallic at all temperatures, we observe a depletion in the far infrared energy interval of the optical conductivity below TSDWT_{SDW}, ascribed to the formation of a pseudogap-like feature in the excitation spectrum. This is accompanied by the narrowing of the Drude term consistent with the dcdc transport results and suggestive of suppression of scattering channels in the SDW state. About 20% of the spectral weight in the far infrared energy interval is affected by the SDW phase transition

    Optical investigation of the metal-insulator transition in FeSb2FeSb_2

    Full text link
    We present a comprehensive optical study of the narrow gap FeSb2FeSb_2 semiconductor. From the optical reflectivity, measured from the far infrared up to the ultraviolet spectral range, we extract the complete absorption spectrum, represented by the real part σ1(ω)\sigma_1(\omega) of the complex optical conductivity. With decreasing temperature below 80 K, we find a progressive depletion of σ1(ω)\sigma_1(\omega) below Eg280E_g\sim 280 cm1^{-1}, the semiconducting optical gap. The suppressed (Drude) spectral weight within the gap is transferred at energies ω>Eg\omega>E_g and also partially piles up over a continuum of excitations extending in the spectral range between zero and EgE_g. Moreover, the interaction of one phonon mode with this continuum leads to an asymmetric phonon shape. Even though several analogies between FeSb2FeSb_2 and FeSiFeSi were claimed and a Kondo-insulator scenario was also invoked for both systems, our data on FeSb2FeSb_2 differ in several aspects from those of FeSiFeSi. The relevance of our findings with respect to the Kondo insulator description will be addressed.Comment: 17 pages, 5 figure

    Infrared signature of the charge-density-wave gap in ZrTe3

    Get PDF
    Abstract.: The chain-like ZrTe3 compound undergoes a charge-density-wave (CDW) transition at TCDW=63K, most strongly affecting the conductivity perpendicular to the chains. We measure the temperature (T) dependence of the optical reflectivity from the far infrared up to the ultraviolet with polarized light. The CDW gap Δ(T) along the direction perpendicular to the chains is compatible for T<TCDW with the behavior of an order parameter within the mean-field Bardeen-Cooper-Schrieffer (BCS) theory. Δ(T) also persists well above TCDW, which emphasizes the role played by fluctuation effect
    corecore